Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
STAR Protoc ; 5(2): 102958, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38568818

RESUMO

Sepsis trains stressed granulocytes to boost nonspecific response and trigger a new wave of inflammation when facing secondary infection. Here, we present a protocol for a murine model of sepsis with secondary infection. We describe steps for cecal ligation and puncture operation and rechallenging with lipopolysaccharide or Pseudomonas aeruginosa during the recovery phase. We also detail steps to characterize the stressed granulocytes by assessing their functional phenotypes and effect on the mortality of rechallenged mice. For complete details on the use and execution of this protocol, please refer to Wang et al.1.

2.
J Control Release ; 369: 517-530, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38569942

RESUMO

Cancer cells rely on aerobic glycolysis and DNA repair signals to drive tumor growth and develop drug resistance. Yet, fine-tuning aerobic glycolysis with the assist of nanotechnology, for example, dampening lactate dehydrogenase (LDH) for cancer cell metabolic reprograming remains to be investigated. Here we focus on anaplastic thyroid cancer (ATC) as an extremely malignant cancer with the high expression of LDH, and develop a pH-responsive and nucleus-targeting platinum nanocluster (Pt@TAT/sPEG) to simultaneously targets LDH and exacerbates DNA damage. Pt@TAT/sPEG effectively disrupts LDH activity, reducing lactate production and ATP levels, and meanwhile induces ROS production, DNA damage, and apoptosis in ATC tumor cells. We found Pt@TAT/sPEG also blocks nucleotide excision repair pathway and achieves effective tumor cell killing. In an orthotopic ATC xenograft model, Pt@TAT/sPEG demonstrates superior tumor growth suppression compared to Pt@sPEG and cisplatin. This nanostrategy offers a feasible approach to simultaneously inhibit glycolysis and DNA repair for metabolic reprogramming and enhanced tumor chemotherapy.

4.
Nat Commun ; 15(1): 2039, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448420

RESUMO

Reversible protein phosphorylation, regulated by protein phosphatases, fine-tunes target protein function and plays a vital role in biological processes. Dysregulation of this process leads to aberrant post-translational modifications (PTMs) and contributes to disease development. Despite the widespread use of artificial catalysts as enzyme mimetics, their direct modulation of proteins remains largely unexplored. To address this gap and enable the reversal of aberrant PTMs for disease therapy, we present the development of artificial protein modulators (APROMs). Through atomic-level engineering of heterogeneous catalysts with asymmetric catalytic centers, these modulators bear structural similarities to protein phosphatases and exhibit remarkable ability to destabilize the bridging µ3-hydroxide. This activation of catalytic centers enables spontaneous hydrolysis of phospho-substrates, providing precise control over PTMs. Notably, APROMs, with protein phosphatase-like characteristics, catalytically reprogram the biological function of α-synuclein by directly hydrolyzing hyperphosphorylated α-synuclein. Consequently, synaptic function is reinforced in Parkinson's disease. Our findings offer a promising avenue for reprogramming protein function through de novo PTMs strategy.


Assuntos
Ursidae , alfa-Sinucleína , Animais , alfa-Sinucleína/genética , Catálise , Engenharia , Hidrólise , Fosfoproteínas Fosfatases/genética
5.
Acta Pharm Sin B ; 14(3): 1132-1149, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486992

RESUMO

Cancer, a complex and heterogeneous disease, arises from genomic instability. Currently, DNA damage-based cancer treatments, including radiotherapy and chemotherapy, are employed in clinical practice. However, the efficacy and safety of these therapies are constrained by various factors, limiting their ability to meet current clinical demands. Metal nanoparticles present promising avenues for enhancing each critical aspect of DNA damage-based cancer therapy. Their customizable physicochemical properties enable the development of targeted and personalized treatment platforms. In this review, we delve into the design principles and optimization strategies of metal nanoparticles. We shed light on the limitations of DNA damage-based therapy while highlighting the diverse strategies made possible by metal nanoparticles. These encompass targeted drug delivery, inhibition of DNA repair mechanisms, induction of cell death, and the cascading immune response. Moreover, we explore the pivotal role of physicochemical factors such as nanoparticle size, stimuli-responsiveness, and surface modification in shaping metal nanoparticle platforms. Finally, we present insights into the challenges and future directions of metal nanoparticles in advancing DNA damage-based cancer therapy, paving the way for novel treatment paradigms.

6.
J Insect Sci ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38297809

RESUMO

Chemosensory proteins (CSPs) are highly efficient carry tools to bind and deliver hydrophobic compounds, which play an important role in the chemosensory process in insects. The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), is a cosmopolitan pest that attacks cruciferous crops. However, the detailed physiological functions of CSPs in P. xylostella remain limited to date. Here, we identified a typical CSP, named PxylCSP18, in P. xylostella and investigated its expression patterns and binding properties of volatiles. PxylCSP18 was highly expressed in antennae and head (without antennae), and the expression level in the male antennae of P. xylostella was obviously higher than that in the female antennae. Moreover, PxylCSP18 has a relatively broad binding spectrum. Fluorescence competitive binding assays showed that PxylCSP18 had strong binding abilities with 14 plant volatiles (Ki < 10 µM) that were repellent or attractive to P. xylostella. Notably, PxylCSP18 had no significant binding affinity to (Z)-11-hexadecenal, (Z)-11-hexadecenyl acetate, and (Z)-11-hexadecenyl alcolol, which are the pheromone components of P. xylostella. The attractive effects of trans-2-hexen-1-ol and isopropyl isothiocyanate to male adults and the attractive effects of isopropyl isothiocyanate and the repellent effects of linalool to female adults were significantly decreased after knocked down the expression of PxylCSP18. Our results revealed that PxylCSP18 might play an important role in host plant detection, avoidance of unsuitable hosts, and selection of oviposition sites; however, it does not participate in mating behavior. Overall, these results extended our knowledge on the CSP-related functions, which provided insightful information about CSP-targeted insecticides.


Assuntos
Inseticidas , Lepidópteros , Mariposas , Feminino , Animais , Mariposas/fisiologia , Isotiocianatos/farmacologia , Inseticidas/farmacologia , Produtos Agrícolas
7.
Aging Dis ; 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38421826

RESUMO

Diminished ovarian reserve (DOR) refers to a decrease in the number and/or quality of oocytes, leading to infertility, poor ovarian response and adverse pregnancy outcomes. Currently, the pathogenesis of DOR is largely unknown, and the efficacy of existing therapeutic methods is limited. Therefore, in-depth exploration of the mechanism underlying DOR is highly important for identifying molecular therapeutic targets for DOR. Our study showed that estrogen receptor beta (ERß) mRNA and protein expression was upregulated in granulosa cells (GCs) from patients with DOR and in the ovaries of DOR model mice. Mechanistically, elevated ERß promotes forkhead transcription factor family 3a (FOXO3a) expression, which contributes to autophagic activation in GCs. Activation of FOXO3a/autophagy signalling leads to decreased cell proliferation and increased cell apoptosis and ultimately leads to DOR. In a cyclophosphamide (Cy)-induced DOR mouse model, treatment with PHTPP, a selective ERß antagonist, rescued fertility by restoring normal sex hormone secretion, estrus cycle duration, follicle development, oocyte quality and litter size. Taken together, these findings reveal a pathological mechanism of DOR based on ERß overexpression and identify PHTPP as a potential therapeutic agent for DOR.

8.
Antimicrob Agents Chemother ; 68(2): e0093723, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38169282

RESUMO

Entering a dormant state is a prevailing mechanism used by bacterial cells to transiently evade antibiotic attacks and become persisters. The dynamic progression of bacterial dormancy depths driven by protein aggregation has been found to be critical for antibiotic persistence in recent years. However, our current understanding of the endogenous genes that affects dormancy depth remains limited. Here, we discovered a novel role of phage shock protein A (pspA) gene in modulating bacterial dormancy depth. Deletion of pspA of Escherichia coli resulted in increased bacterial dormancy depths and prolonged lag times for resuscitation during the stationary phase. ∆pspA exhibited a higher persister ratio compared to the wild type when challenged with various antibiotics. Microscopic images revealed that ∆pspA showed accelerated formation of protein aggresomes, which were collections of endogenous protein aggregates. Time-lapse imaging established the positive correlation between protein aggregation and antibiotic persistence of ∆pspA at the single-cell level. To investigate the molecular mechanism underlying accelerated protein aggregation, we performed transcriptome profiling and found the increased abundance of chaperons and a general metabolic slowdown in the absence of pspA. Consistent with the transcriptomic results, the ∆pspA strain showed a decreased cellular ATP level, which could be rescued by glucose supplementation. Then, we verified that replenishment of cellular ATP levels by adding glucose could inhibit protein aggregation and reduce persister formation in ∆pspA. This study highlights the novel role of pspA in maintaining proteostasis, regulating dormancy depth, and affecting antibiotic persistence during stationary phase.


Assuntos
Antibacterianos , Agregados Proteicos , Antibacterianos/farmacologia , Escherichia coli/genética , Trifosfato de Adenosina/metabolismo , Glucose/metabolismo
10.
Nat Commun ; 15(1): 460, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212655

RESUMO

Targeted assembly of nanoparticles in biological systems holds great promise for disease-specific imaging and therapy. However, the current manipulation of nanoparticle dynamics is primarily limited to organic pericyclic reactions, which necessitate the introduction of synthetic functional groups as bioorthogonal handles on the nanoparticles, leading to complex and laborious design processes. Here, we report the synthesis of tyrosine (Tyr)-modified peptides-capped iodine (I) doped CuS nanoparticles (CuS-I@P1 NPs) as self-catalytic building blocks that undergo self-propelled assembly inside tumour cells via Tyr-Tyr condensation reactions catalyzed by the nanoparticles themselves. Upon cellular internalization, the CuS-I@P1 NPs undergo furin-guided condensation reactions, leading to the formation of CuS-I nanoparticle assemblies through dityrosine bond. The tumour-specific furin-instructed intracellular assembly of CuS-I NPs exhibits activatable dual-modal imaging capability and enhanced photothermal effect, enabling highly efficient imaging and therapy of tumours. The robust nanoparticle self-catalysis-regulated in situ assembly, facilitated by natural handles, offers the advantages of convenient fabrication, high reaction specificity, and biocompatibility, representing a generalizable strategy for target-specific activatable biomedical imaging and therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Furina , Fototerapia , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Nanopartículas/química , Catálise , Cobre/química
11.
Angew Chem Int Ed Engl ; 63(10): e202318948, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38212253

RESUMO

Ultra-high field (UHF) magnetic resonance imaging (MRI) has emerged as a focal point of interest in the field of cancer diagnosis. Despite the ability of current paramagnetic or superparamagnetic smart MRI contrast agents to selectively enhance tumor signals in low-field MRI, their effectiveness at UHF remains inadequate due to inherent magnetism. Here, we report a ligand-mediated magnetism-conversion nanoprobe (MCNP) composed of 3-mercaptopropionic acid ligand-coated silver-gadolinium bimetallic nanoparticles. The MCNP exhibits a pH-dependent magnetism conversion from ferromagnetism to diamagnetism, facilitating tunable nanomagnetism for pH-activatable UHF MRI. Under neutral pH, the thiolate (-S- ) ligands lead to short τ'm and increased magnetization of the MCNPs. Conversely, in the acidic tumor microenvironment, the thiolate ligands are protonated and transform into thiol (-SH) ligands, resulting in prolonged τ'm and decreased magnetization of the MCNP, thereby enhancing longitudinal relaxivity (r1) values at UHF MRI. Notably, under a 9 T MRI field, the pH-sensitive changes in Ag-S binding affinity of the MCNP lead to a remarkable (>10-fold) r1 increase in an acidic medium (pH 5.0). In vivo studies demonstrate the capability of MCNPs to amplify MRI signal of hepatic tumors, suggesting their potential as a next-generation UHF-tailored smart MRI contrast agent.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias , Humanos , Ligantes , Imageamento por Ressonância Magnética/métodos , Meios de Contraste , Concentração de Íons de Hidrogênio , Microambiente Tumoral
12.
Adv Sci (Weinh) ; 11(6): e2307389, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064201

RESUMO

Cancer therapeutic vaccines are powerful tools for immune system activation and eliciting protective responses against tumors. However, their efficacy has often been hindered by weak and slow immune responses. Here, the authors introduce an immunization strategy employing senescent erythrocytes to facilitate the accumulation of immunomodulatory zinc-Alum/ovalbumin (ZAlum/OVA) nanovaccines within both the spleen and solid tumors by temporarily saturating liver macrophages. This approach sets the stage for boosted cancer metalloimmunotherapy through a cascade immune activation. The accumulation of ZAlum/OVA nanovaccines in the spleen substantially enhances autophagy-dependent antigen presentation in dendritic cells, rapidly initiating OVA-specific T-cell responses against solid tumors. Concurrently, ZAlum/OVA nanovaccines accumulated in the tumor microenvironment trigger immunogenic cell death, leading to the induction of individualized tumor-associated antigen-specific T cell responses and increased T cell infiltration. This erythrocyte-assisted cascade immune activation using ZAlum/OVA nanovaccines results in rapid and robust antitumor immunity induction, holding great potential for clinical cancer metalloimmunotherapy.


Assuntos
Compostos de Alúmen , Vacinas Anticâncer , Neoplasias , Humanos , Ovalbumina , Neoplasias/tratamento farmacológico , Apresentação de Antígeno , Zinco , Microambiente Tumoral
14.
Adv Mater ; 36(13): e2310404, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38149464

RESUMO

The alpha-synuclein (α-syn) oligomers hold a central role in the pathology of Parkinson's disease (PD). Achieving accurate detection of α-syn oligomers in vivo presents a promising avenue for early and accurate diagnosis of PD. Magnetic resonance imaging (MRI), with non-invasion and exceptional tissue penetration, offers a potent tool for visualizing α-syn oligomers in vivo. Nonetheless, ensuring diagnostic specificity remains a formidable challenge. Herein, a novel MRI probe (ASOSN) is introduced, which encompasses highly sensitive antiferromagnetic nanoparticles functionalized with single-chain fragment variable antibodies, endowing it with the capacity for discerning recognition and binding to α-syn oligomers and triggering a switchable T1-T2 MRI signal. Significantly, ASOSN possesses the unique capability to accurately discriminate α-syn oligomers from neuroinflammation in vivo. Moreover, ASOSN facilitates the non-invasive and precise visualizing of endogenous α-syn oligomers in living systems. This innovative design heralds the development of a non-invasive visualization strategy for α-syn oligomers, marking a pivotal advancement for early and accurate diagnosis of PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , alfa-Sinucleína/metabolismo
15.
Nutr Res Pract ; 17(6): 1084-1098, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053832

RESUMO

BACKGROUND/OBJECTIVES: Previous research has shown maternal betaine supplementation alleviates fetal-derived hepatic steatosis. Therefore, this study examined the anti-inflammatory effect of maternal betaine intake in offspring mice and its mechanism. MATERIALS/METHODS: Female C57BL/6J mice and their offspring were randomly divided into 3 groups according to the treatment received during gestation and lactation: control diet (CD), fatty liver disease (FLD), and fatty liver disease + 1% betaine (FLD-BET). The FLD group was given a high-fat diet and streptozotocin (HFD + STZ), and the FLD-BET group was treated with HFD + STZ + 1% betaine. After weaning, the offspring mice were given a normal diet for 5 weeks and then dissected to measure the relevant indexes. RESULTS: Compared to the CD group, the offspring mice in the FLD group revealed obvious hepatic steatosis and increased serum levels of alanine aminotransferase, interleukin (IL)-6, and tumor necrosis factor (TNF)-α; maternal betaine supplementation reversed these changes. The hepatic mRNA expression levels of IL-6, IL-18, and Caspase-1 were significantly higher in the FLD group than in the CD group. Maternal betaine supplementation reduced the expression of IL-1ß, IL-6, IL-18, and apoptosis-associated speck-like protein containing C-terminal caspase recruitment domain (ASC). Maternal betaine supplementation also reversed the increasing protein expressions of nitric oxide dioxygenase-like receptor family pyrin domain containing 3 (NLRP3), ASC, Caspase-1, IL-1ß, and IL-18 in offspring mice exposed to HFD + STZ. Maternal betaine supplementation decreased the homocysteine (Hcy) and s-adenosine homocysteine (SAH) levels significantly in the livers. Furthermore, the hepatic Hcy concentrations showed significant inverse relationships with the mRNA expression of TNF-α, NLRP3, ASC, and IL-18. The hepatic SAH concentration was inversely associated with the IL-1ß mRNA expression. CONCLUSIONS: The lipotropic and anti-inflammatory effect of maternal betaine supplementation may be associated with the inhibition of NLRP3 inflammasome in the livers of the offspring mice.

16.
Adv Sci (Weinh) ; 10(34): e2303091, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863665

RESUMO

Erlotinib, an EGFR tyrosine kinase inhibitor, is used for treating patients with cancer exhibiting EGFR overexpression or mutation. However, the response rate of erlotinib is low among patients with gastric cancer (GC). The findings of this study illustrated that the overexpression of bromodomain PHD finger transcription factor (BPTF) is partially responsible for erlotinib resistance in GC, and the combination of the BPTF inhibitor AU-1 with erlotinib synergistically inhibited tumor growth both in vivo and in vitro. AU-1 inhibited the epigenetic function of BPTF and decreased the transcriptional activity of c-MYC on PLCG1 by attenuating chromosome accessibility of the PLCG1 promoter region, thus decreasing the expression of p-PLCG1 and p-Erk and eventually improving the sensitivity of GC cells to erlotinib. In patient-derived xenograft (PDX) models, AU-1 monotherapy exhibited remarkable tumor-inhibiting activity and is synergistic anti-tumor effects when combined with erlotinib. Altogether, the findings illustrate that BPTF affects the responsiveness of GC to erlotinib by epigenetically regulating the c-MYC/PLCG1/pErk axis, and the combination of BPTF inhibitors and erlotinib is a viable therapeutic approach for GC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias Gástricas , Humanos , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Fosfolipase C gama/farmacologia
17.
Biochem Pharmacol ; 217: 115849, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37806457

RESUMO

Cancer stem cells (CSCs) have been proposed to explain tumor relapse and chemoresistance in various types of cancers, and androgen receptor (AR) has been emerged as a potential regulator of stemness in cancers. However, the underlying mechanism of AR-regulated CSCs properties and chemoresistance in gastric cancer (GC) remains unknown. Here, we shown that AR is upregulated in GC tissues and correlates with poor survival rate and CSCs phenotypes of GC patients. According to our experimental data, overexpression of AR upregulated the expression of CSCs markers and this was consistent with the result concluded from data analysis that the expression of AR was positively correlated with CD44 in GC patients. In addition, AR overexpression obviously enhanced the tumor sphere formation ability and chemoresistance of GC cells in vitro. Whereas these effects were attenuated by inhibition of AR. These results were further validated in vivo that MGC-803 cells overexpressing AR had stronger properties to initiate gastric tumorigenesis than the control cells, and inhibition of AR increased the chemosensitivity of GC cells. Mechanically, AR upregulated CD44 expression by directly binding to its promoter region and Yes-associated protein 1 (YAP1) served as the co-factor of AR, which was demonstrated by the fact that the promoting effects of AR on GC cells stemness were partially counteracted by YAP1 knockdown. Thus, this study revealed that AR facilitates CSCs properties and chemoresistance of GC cells via forming complex with YAP1and indicates a potential therapeutic approach to GC patients.


Assuntos
Receptores Androgênicos , Neoplasias Gástricas , Proteínas de Sinalização YAP , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
18.
Nanomedicine (Lond) ; 18(22): 1585-1606, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37830425

RESUMO

Phototherapeutics is gaining momentum as a mainstream treatment for cancer, with gold-semiconductor nanocomposites showing promise as potent phototherapeutic agents due to their structural tunability, biocompatibility and functional diversity. Such nanohybrids possess plasmonic characteristics in the presence of gold and the catalytic nature of semiconductor units, as well as the unexpected physicochemical properties arising from the contact interface. This perspective provides an overview of the latest research on gold-semiconductor nanocomposites for photodynamic, photothermal and photocatalytic therapy. The relationship between the spatial configuration of these nanohybrids and their practical performance was explored to deliver comprehensive insights and guidance for the design and fabrication of novel composite nanoplatforms to enhance the efficiency of phototherapeutics, promoting the development of nanotechnology-based advanced biomedical applications.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Ouro/química , Fototerapia , Neoplasias/tratamento farmacológico , Semicondutores
19.
Adv Sci (Weinh) ; 10(32): e2303053, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37759381

RESUMO

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are prevalent critical illnesses with a high mortality rate among patients in intensive care units. Neutrophil extracellular traps (NETs) are implicated in the pathogenesis of ALI/ARDS and represent a promising therapeutic target. However, the clinical application of deoxyribonuclease I (DNase I), the only drug currently available to clear NETs, is limited due to the lack of precise and efficient delivery strategies. Therefore, targeted delivery of DNase I to the inflamed lung remains a critical issue to be addressed. Herein, a novel biomimetic DNase I delivery system is developed (DCNV) that employs genetically and bioorthogonally engineered cellular nanovesicles for pulmonary NETs clearance. The CXC motif chemokine receptor 2 overexpressed cellular nanovesicles can mimic the inflammatory chemotaxis of neutrophils in ALI/ARDS, leading to enhanced lung accumulation. Furthermore, DNase I immobilized through bioorthogonal chemistry exhibits remarkable enzymatic activity in NETs degradation, thus restraining inflammation and safeguarding lung tissue in the lipopolysaccharide-induced ALI murine model. Collectively, the findings present a groundbreaking proof-of-concept in the utilization of biomimetic cellular nanovesicles to deliver DNase I for treating ALI/ARDS. This innovative strategy may usher in a new era in the development of pharmacological interventions for various inflammation-related diseases.


Assuntos
Lesão Pulmonar Aguda , Armadilhas Extracelulares , Síndrome do Desconforto Respiratório , Humanos , Animais , Camundongos , Armadilhas Extracelulares/metabolismo , Lesão Pulmonar Aguda/metabolismo , Inflamação/metabolismo , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/farmacologia , Desoxirribonuclease I/uso terapêutico
20.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686205

RESUMO

The long non-coding RNA (lncRNA) actin fiber-associated protein-1 antisense RNA 1 (AFAP1-AS1) exerted oncogenic activity in triple-negative breast cancer (TNBC). We designed this study and conducted it to investigate the upstream regulation mechanism of AFAP1-AS1 in TNBC tumorigenesis. In this work, we proved the localization of AFAP1-AS1 in the cytoplasm. We elucidated the mechanism by which the transcription factor specificity protein 1 (SP1) modulated AFAP1-AS1 in TNBC progression, which has yet to be thoroughly studied. Dual luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay revealed a strong affinity of SP1 toward the promoter regions P3 of AFAP1-AS1, proving the gene expression regulation of AFAP1-AS1 via SP1 in TNBC. Additionally, SP1 could facilitate the tumorigenesis of TNBC cells in vitro and in vivo by regulating the AFAP1-AS1 expression. Furthermore, silenced AFAP1-AS1 suppressed the expression of genes in the mTOR pathway, such as eukaryotic translation initiation factor 4B (EIF4B), mitogen-activated protein kinase-associated protein 1 (MAPKAP1), SEH1-like nucleoporin (SEH1L), serum/glucocorticoid regulated kinase 1 (SGK1), and its target NEDD4-like E3 ubiquitin protein ligase (NEDD4L), and promoted the gene expression of s-phase kinase-associated protein 2 (SKP2). Overall, this study emphasized the oncogenic role of SP1 and AFAP1-AS1 in TNBC and illustrated the AFAP1-AS1 upstream interaction with SP1 and the downstream modulatory of mTOR signaling, thus offering insights into the tumorigenesis mechanism in TNBC.


Assuntos
RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , Regulação para Cima/genética , RNA Longo não Codificante/genética , Neoplasias de Mama Triplo Negativas/genética , Serina-Treonina Quinases TOR/genética , Transformação Celular Neoplásica , Carcinogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...